edutecnica

Distribuzione normale        

La distribuzione di variabile aleatoria continua pi¨ importante Ŕ la distribuzione normale.
Questa distribuzione Ŕ stata individuata nel 1733 da De Moivre come mezzo per dare una valutazione approssimata della funzione di probabilitÓ binomiale; ha , successivamente, acquisito importanza quando nel 1809 Gauss ne fece uso nel contesto della teoria degli errori.
Si considera una grandezza X definita in tutto il campo reale ( -∞ ; +∞ ). X ha una distribuzione di probabilitÓ normale se la sua densitÓ di probabilitÓ risulta essere

con σ = deviazione standard (scarto quadratico medio) e μ = media.
Se X ha una distribuzione normale di probabilitÓ descritta dalla formula suddetta, X viene detta variabile normale. Le caratteristiche fondamentali della f(x) sono:

● la forma a campana
● la simmetria rispetto al valor medio μ
● il massimo per x= μ quando l'ordinata vale
● quanto pi¨ x si allontana da μ tanto pi¨ f(x) decresce tendendo asintoticamente a zero
● i punti μ+σ e μ-σ sono punti di flesso.

Il valore di μ viene anche indicato come centro della distribuzione e caratterizza la posizione della curva rispetto all'asse delle ordinate.
Al variare di μ la curva si sposta lungo l'asse x, ma resta invariata la sua forma.

Il parametro σ, caratterizza la forma della curva, dato che rappresenta la dispersione dei valori attorno al massimo della curva.

all'aumentare di σ la curva si appiattisce e si allarga, mentre al diminuire di σ la curva si restringe e si alza.

Per determinare la probabilitÓ che la variabile aleatoria assume in un determinato intervallo (a,b) Ŕ necessario calcolare l'area sottesa alla curva compresa tra a e b.

Non si tratta di un integrale semplice da risolvere perchŔ si devono applicare procedimenti di sviluppo in serie, che comunque portano a valori approssimati che dipendono, inoltre, da μ e da σ.

Per superare questo problema, si fa una trasformazione di variabile e si pone:

      La funzione densitÓ di probabilitÓ di z :          

Questa viene chiamata funzione di densitÓ di probabilitÓ della distribuzione normale ridotta.

In base alla precedente trasformazione Ŕ possibile determinare la probabilitÓ che una generica variabile aleatoria X con media μ e deviazione standard σ appartenga ad un intervallo (a,b).

esistono infinite curve che approssimano a tale funzione al variare di μ e σ.
La curva a cui ci si pu˛ sempre ricondurre (con un'opportuna trasformazione) Ŕ la curva della distribuzione normale standardizzata. con parametri :
media: μ= 0
deviazione standard: σ= 1

z Ŕ la variabile normale standardizzata. La curva che la rappresenta volge la sua concavitÓ verso il basso nell'intervallo (-1, 1) i punti di ascissa z=±1 sono dei flessi.

Il 68,26% dei valori Ŕ compreso fra -1 e +1.
Il 95,44% dei valori Ŕ compreso fra -2 e +2.
Il 99,73% dei valori Ŕ compreso fra -3 e +3.

Un'area di probabilitÓ del 95% Ŕ compresa fra ±1,96
Un'area di probabilitÓ del 99% Ŕ compresa fra ±2,576

Attraverso la trasformazione lineare       

Ŕ possibile determinare la probabilitÓ che una generica variabile aleatoria X, con media μ e deviazione standard σ appartenga ad un intervallo (a,b). Valori indicativi della funzione di probabilità sono riportati nella tabella allegata.
Se vogliamo calcolare P(X≤xo) notiamo che

in modo analogo per calcolare P(x1≤X≤x2)

Facciamo un esempio, supponiamo di misurare il peso di 1000 individui rilevando un valore medio μ=70kg con uno scarto quadratico medio σ=8kg; vogliamo determinare la probabilitÓ che:
A i pesi siano compresi tra 60kg e 70kg
B i pesi siano esterni all'intervallo tra 65kg e 75kg
C i pesi siano superiori a 80kg
D i pesi siano inferiori a 60kg.

punto A per x1=60        dalle tabelle della distribuzione normale
leggiamo una probabilitÓ cumulativa per valori negativi di z con z1=-1,25 corrispondente ad una probabilitÓ p(z1≤-1,25)=0,1056

     ovviamente p(z2≤0)=0,5. Sottraendo le due aree p(-1,25≤z≤0)=0,5-0,1056=0,3944

ci saranno 1000·0,3944=394,4 (almeno 394) soggetti di peso compreso tra 60 e 70kg.

Punto B per i pesi esterni all'intervallo tra 65kg e 75kg       

dalle tabelle della probabilitÓ cumulativa per valori negativi di z con z1=-0,625 si trova una probabilitÓ che possiamo ritenere
p(z1≤-0,625)=0, 2659

mentre    

dalle tabelle della probabilitÓ cumulativa per valori positivi di z con z2=0,625 si trova una probabilitÓ che possiamo ritenere
p(z2≤ 0,625)= 0,734, ovviamente a noi interessa la probabilitÓ p(z2≥ 0,625)= 1-0,734,= 0,2659 identico al precedente come era prevedibile.

La probabilitÓ complessiva di trovare un soggetto che abbia un peso inferiore a 65kg oppure maggiore di 75kg Ŕ 2·02659= 0,5318

Punto C per trovare la probabilitÓ di trovare un soggetto che pesa di pi¨ di 80kg Ŕ facile

dalle tabelle della probabilitÓ cumulativa per valori positivi di z=1,25 si trova una probabilitÓ che possiamo ritenere p(z≤ 1,25)= 0,8944, ovviamente a noi interessa la probabilitÓ p(z≥ 1,25)= 1-0,8944=0,1056 come dire che su 1000 soggetti 1000·0,1056=105,6 (105 diremo) hanno la probabilitÓ di pesare pi¨ di 80kg.

Punto D trovare chi pesa meno di 60kg. Ŕ ancora pi¨ facile     sa come si Ŕ gi˛ visto al punto A p(z≤-1,25)=0,1056

Come si vede, noti i parametri della variabile aleatoria X, le probabilita cercate possono essere trovate manualmente (con le tavole) oppure automaticamente, tramite il modulo seguente.

μ    

σ    

sopra   

   

sotto

   

compreso tra

e

esterno a

e

Area = probabilità =