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Preface 

Active magnetic bearings (AMB) have become increasingly important during the past two 

decades and are nowadays installed in a large number of industrial applications in turbo 

machinery, vacuum technology and energy production. Due to the complete lack of any 

mechanical contact AMBs offer special properties that cannot be achieved by other 

bearings technologies. The most important among those special features are the 

lubricant-free and, therefore, contamination-free operation, the ability to be operated at 

very high speeds and the possibility for active vibration control (damping of mechanical 

oscillations, compensation of unbalance forces, etc.). Moreover, as they are inherently 

equipped with sensors and active control elements, AMBs offer a built-in monitoring and 

supervision capability, without any need for additional instrumentation. This opens new 

possibilities for early fault diagnosis and preventive maintenance, hence rendering such a 

system a �smart machine�. 

Active magnetic bearings are a typical mechatronic product. This means that, in order to 

understand, develop and use this technology, the behavior of each single system 

component (rotor, bearing, sensor, controller, etc.), and the various interactions between 

them must be investigated first. 

The aim of this short lecture course is to investigate the behavior of the most important 

component of any AMB system more in detail: the levitated body. Here, the course 

restricts itself to rotating bodies (rotors). Starting from a very simple dynamic mechanical 

system the modeling and analysis tools are developed and then extended to the special 

properties of a rotating mechanical system. The results are compared with actual 

measurements obtained from an experimental AMB test rig. 
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1. A Simple 1 DOF System 

1.1. Introduction 

In order to analyze a complex dynamic mechanical system it is essential to first 

understand the properties of the simplest possible dynamic mechanical system: a system 

with only one degree of freedom (DOF). Based on this it can be shown that the modeling 

and analysis concepts developed for such a simple system can rather straightforwardly be 

adapted to a system with more than one DOF (the number of DOF is the minimum number 

of coordinates necessary to describe the entire system state). 

In practice, one of the most important aspects of a dynamic mechanical system is its 

ability to oscillate. Most often, the resulting vibrations are unwanted effects and have to 

be suppressed. Hence, emphasis in this course is put on vibration analysis. 

1.2. The Undamped Free 1 DOF Mechanical Oscillator 

1.2.1. Equation of Motion 

The simplest possible mechanical structure with the ability to oscillate is a single rigid 

mass attached to a spring (spring-mass system). It is known that, for any kind of 

oscillatory system, there must be different energy reservoirs between which energy can 

be transferred in both directions. In the case of the simple spring-mass system there are 

two such reservoirs: Kinetic energy is stored in the mass when it moves, potential energy 

is stored in the spring when it is compressed or expanded. During oscillation energy is 

converted and transferred back and forth between these two reservoirs, in the simplest 

(theoretical) case without any loss. 
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In Figure 1.1 a simple spring-mass system is displayed. The mass m is assumed to carry 

out vertical translational movements only along the direction x, the spring is assumed to 

have no mass but a stiffness k. It is furthermore assumed that there is no other external 

force than the weight of the mass. 

 

Figure 1.1: Undamped free 1 DOF spring-mass system 

The equations of motion for this simple system can be derived by energy methods or by 

Newton�s resp. Euler�s laws, which is the simplest approach here: 

 gmxkxm  ''  (1.1) 

In equation (1.1) it is adopted that that the x� coordinate has its origin where the spring is 
unloaded. This has the effect that the constant weight term mg still exists within the 

inhomogeneous differential equation (DE). It turns out that it is more useful to define 

another inertial coordinate x, having its origin at the point where the spring is loaded 

(compressed) by the weight. The static equilibrium condition for this case results to 

 gmek   (1.2) 

and DE (1.1) together with (1.2) becomes simpler: 

   xkxmgmexkxm    (1.3) 

The result from (1.3) can be brought into the well-known simplest form of a homogeneous 

2nd order DE for an oscillator: 

 0 xkxm   (1.4) 
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1.2.2. Vibration Analysis 

Apart from the trivial solution, which is x=0, we are first of all interested in a non-vanishing 

solution x(t) that satisfies DE (1.4). From mathematics we know that the following guess 

function always yields a solution for this class of DE (homogeneous, linear, constant 

coefficients): 

 tetx )(  (1.5) 

By introducing this guess into DE (1.4) we obtain: 

   00 22  ttt ekmkeem    (1.6) 

Equation (1.6) is called the �characteristic equation� and the expression in brackets is the 
�characteristic polynomial� p() of the system.  is called the system�s �eigenvalue�. 

Since, for any value of  the term et never yields 0 the guess (1.5) results in a condition 

that must be satisfied by the still unknown eigenvalue 

 
m
kj

m
k

2,1  (1.7) 

and, hence, the general solution of DE (1.4) becomes the superposition of the two 

solutions for the guess function found: 
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eCeCtx
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 21)(  (1.8) 

However, we must claim that the solution x(t) is non-imaginary. This can easily be 

achieved by the following mathematical equivalences: 
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 



  (1.9) 

With (1.9) the general solution (1.8) becomes a purely real solution with real constants A 

and B and angular frequency 0: 
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m
ktBtAtx  000 ;)sin()cos()(   (1.10) 

Equation (1.10) is the classic description of an undamped free oscillatory system with the 

angular frequency 0 (unit rad s-1). As already mentioned, this angular frequency is also 

called the �eigenfrequency�, a term which is of greatest importance for any vibration 

system. The physical meaning of the eigenfrequency is very intuitive: it describes the 

period of the oscillation which is proprietary to the system itself, hence only determined by 

its parameters (�eigen� means �proprietary� in German language). In the case of the 
simple spring-mass system this eigenfrequency is only determined by the spring stiffness 

k and the mass m. The stiffer the spring or the smaller the mass, the higher the 

eigenfrequency will be � a result which corresponds nicely to everybody�s experience. 

The still undefined constants A and B are determined by the initial condition of the 

oscillation, i.e. with which amplitude and which initial velocity of the mass m the oscillation 

is started. The simplest case is given if the motion is started with a given ampitude x0 and 

vanishing initial velocity. In this case the final solution of DE (1.4) becomes: 

 ;0)0(;)0(;;)cos()( 0000  xxx
m
ktxtx   (1.11) 

 

Figure 1.2: Oscillation of the undamped 1 DOF spring-mass system 
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As can be seen from equation (1.11) resp. from figure 1.2, the undamped or also called 

�harmonic� oscillation will never stop once excited, hence, energy will be transferred back 
and forth between the mass and the spring without any loss. Due to the fact that the total 

amount of energy is maintained constant within the system, such as system is also called 

"conservative�. This can very easily be verified by setting up the total energy E as the 
sum of kinetic and potential energy followed by taking the time derivative of this 

expression: 

 22

2
1

2
1 kxxmE    (1.12) 

   0
2
1

2
1 22 






  xkxxmxkxxxmkxxm

dt
dE   (1.13) 

As we can see in expression (1.13) the time derivative of the total energy E is zero, 

hence, E must be constant, which proves the assumption of energy conservation. 

Energy conservation is a strongly idealized case � in reality there is always some amount 

of energy dissipation associated with any mechanical system vibration. Therefore, a 

simple dissipation element is added to the system in the next section. 

1.3. The Damped Free 1 DOF Mechanical Oscillator 

1.3.1. Equation of Motion 

A very suitable mechanical model for dealing with energy losses is the viscous damper, 

provided, that displacements and velocities are small (linear system). The viscous 

damper produces a force which is proportional to the velocity of the elements within the 

damper and opposite to the instantaneous direction of motion. In figure 1.3 such a 

viscous damper with damping constant d is added to the simple spring-mass system. 

The equation of motion can be derived in exactly the same way as shown in paragraph 

1.2.1: 

 xdxkxm    (1.14) 
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Figure 1.3: Free 1 DOF spring-mass system with viscous damper 

As x is still the coordinate with origin in the position of the spring loaded by the weight the 

term mg vanishes from equation (1.14). As before the resulting DE is again of 2nd order, 

homogeneous and has constant coefficients: 

 0 kxxdxm   (1.15) 

1.3.2. Vibration Analysis 

The derivation of the solution of DE (1.15) is similar to the procedure for the undamped 

system. Here, the characteristic equation for the eigenvalue  yields the characteristic 

polynomial: 

 02  kdm   (1.16) 

For the following analysis it is suitable to use expressions already developed for the 

undamped system. By doing this equation (1.16) becomes: 

 
m
d

m
k

2
;;02 2

0
2
0

2    (1.17) 

As we can see, the solution of the characteristic equation (1.17), i.e. the eigenvalue  that 

determines the eigenfrequency  of the system, now also depends on the damping factor 

d resp. on the normalized damping coefficient : 

 
   j2,1  (1.18) 

From equation (1.18) we can see that, with increasing damping, the eigenvalue  is no 

more purely imaginary as given by (1.7) but becomes generally complex with a negative 



8 Chapter 1: A Simple 1 DOF System 

Modeling and Analysis of Dynamic Mechanical Systems Lar / 07.05.2006 

real part equivalent to the damping coefficient . This behavior, i.e. the smooth transition 

from an undamped to an increasingly damped system, can also be described by a root 

plot of  within the complex plane, as shown in figure 1.4. 

In figure 1.4 it can easily be seen that, with increasing damping, a negative real part of 

the solution  develops, while the imaginary part becomes smaller. For large damping 

coefficients, i.e. for  >= 0, the imaginary part is identically 0 and two real solutions for  

exist, as also viewable from (1.18). In this case the system reaches �critical� resp. 
�overcritical� damping. In this short course, only �undercritical� damping is considered, 
This means, that such systems maintain their oscillation capability, whereas critically or 

overcritically damped systems cannot oscillate any more. 

 

Figure 1.4: Root locus of the eigenvalue  of the damped 1 DOF system 

as a function of the damping coefficient  

By inserting the solution (1.18) of the characteristic equation into the guess function (1.5) 

and by developing a purely real solution for the displacement x(t), as done for equation 

(1.10) in the undamped case, we obtain the general solution for the time behavior of the 

damped spring-mass system: 
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   0
22

0 ;;)sin()cos()(    tBtAetx t
 (1.19) 

Equation (1.19) describes a motion with an exponentially decaying amplitude, hence, this 

oscillation can no more be called harmonic or even periodic, as it was the case for the 

undamped system. Nevertheless, it still makes sense to consider the system an 

oscillatory system, especially for small damping coefficients. This becomes even clearer 

when the time between two consecutive zero-crossing points is examined (initial 

conditions as given in section 1.2.2). This is shown in figure 1.5: 

 

Figure 1.5: Damped oscillation of the 1 DOF spring-mass system 

As can be seen from figure 1.5 the time T between the zero-crossing points is constant, 

even if the oscillation amplitude becomes smaller. However, it is important to mention that 

this does not hold for the time between two relative amplitude maxima. The time T can, 

therefore, be called a �pseudo period� of the damped system, and  can correspondingly 

be called the �pseudo angular frequency�. This relationship is given in equation (1.20): 

 
22

0

22








T  (1.20) 
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The pseudo angular frequency , which is, by definition, the so-called �eigenfrequency� of 
the damped system, is smaller than the frequency 0 in the undamped case, hence, it can 

be concluded that any additional damping reduces the eigenfrequency of an originally 

undamped system. This effect is also depicted in the root plot in figure 1.4. 

We will see further below that the negative real part of the eigenvalue  determines the 

stability of the system. In the undamped case the system is only �limit stable�, also 
recognizable by the non-decaying motion amplitude (see figure 1.2). In the damped case, 

however, the motion amplitude asymptotically reaches zero with time, and the system can 

be considered �asymptotically stable�. 

1.4. Forced Vibration of a Damped 1 DOF Mechanical Oscillator 

Up to now we have only considered the so-called �free� system, i.e. external forces have 
not been included in the model description (apart from the weight). However, the 

influence of external forces is present and of great importance in any practical mechanical 

system (e.g. unbalance forces in a rotating machine). Therefore, it clearly makes sense to 

investigate the influence of an external force F(t), as introduced in figure 1.6, on the 

simple 1 DOF system developed so far. 

 

Figure 1.6: 1 DOF damped spring-mass system with external disturbance force 

1.4.1. Equation of Motion 

The equation of motion, as developed above, can be simply expanded by the term for the 

external force: 

 )(tFxdxkxm    (1.21) 
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The previously homogeneous differential equation (DE) now becomes inhomogeneous: 

 )(tFxkxdxm    (1.22) 

From mathematical theory of linear DE we know that the most general solution of (1.22) is 

always a superposition of the solution (1.19) of the homogeneous DE and a particulate 

solution of the inhomogeneous DE (1.22). Since, in most cases, we are not so much 

interested in the transient system behavior but rather in the system�s response to the 
external force, we can neglect the homogeneous part of the solution, provided that we 

deal with an asymptotically stable system for which the transient part of the response will 

always decay to zero after some time. 

The particulate solution to the inhomogeneous DE (1.22), however, strongly depends on 

the time dependency of the external force. If we don�t know this dependency the solution 
(integration) of the DE is impossible. In practice, external forces are very often periodic, 

especially in rotating machinery. In this case F(t) can be considered a superposition of 

harmonic functions with different frequencies, but all frequencies being integer multiples 

of the periodic force�s fundamental frequency (so-called �Fourier� decomposition). With 
the property that the dynamic system itself is linear it�s response to such a periodic 

external force is the superposition of its responses to the individual harmonic components 

of the external force. Thus, it becomes clear that the analysis of the purely harmonic 

system response is fundamentally important and serves for solving the more general case 

of any periodic external excitation. 

Following this finding, we can replace the term for the force F(t) in (1.22) by a purely 

harmonic term with frequency : 

 )cos( tFxkxdxm    (1.23) 

For the further analysis it is suitable to divide equation (1.23) by the mass m in order to 

achieve a description using the above introduced characteristic parameters  and 0. We 

will also make use of the fact that the systems investigated here are assumed to be 

undercritically damped (< 0). 

 
m
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m
ktfxxx
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;;)cos(2 2
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2
0    (1.24) 
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1.4.2. Vibration Analysis 

The particulate solution xP(t) of (1.24) can be either obtained by a complex or by a purely 

real mathematical analysis. It turns out, that complex analysis is more elegant and 

efficient, whereas the purely real approach is more straightforward and avoids the 

introduction of virtually complex external excitation forces. 

A simple and always working guess for the particulate solution of DE (1.24) is to set up a 

general response similar to the excitation, i.e. by assuming that the response is also 

harmonic, with identical frequency  but with an arbitrary phase shift  between excitation 

and system response and with an amplification factor a. Hence, the mass m no longer 

oscillates with its eigenfrequency  but with the same frequency  as the excitation force. 

This behavior is called the �forced vibration� of the damped spring-mass system. 

 )cos()( 0  txatxP  (1.25) 

In expression (1.25) x0 is the static displacement caused by a force with amplitude f, 

hence: 

 




fx0  (1.26) 

By inserting expressions (1.25) and (1.26) into DE (1.24) one obtains the following 

relationships for the amplification a and the phase shift : 

 
 





tan(  (1.27) 

 

   22
2 











a  (1.28) 

For the graphical plot of above expressions it is very useful to introduce the 

dimensionless frequency  and the dimensionless damping coefficient : 

 












 ;  (1.29) 
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Expressions (1.27) and (1.28) then become with (1.29): 

 





1
tan(  (1.30) 

 

   22
1

1

 



a  (1.31) 

It is most interesting to investigate the phase shift  between the external force and the 

displacement xp(t) as a function of the dimensionless frequency , i.e. for different 

excitation frequencies. These relationships are plotted in figure 1.7 for different 

dimensionless damping coefficients . 

In figure 1.8 the time response xP(t) and the excitation force f(t) are plotted over time for 

different dimensionless frequencies . 

The analysis of the behavior shown in figure 1.7 and 1.8 brings up the following results: 

The phase shift  between excitation and system response rises with the excitation 

frequency . For low frequencies there is almost no phase shift (force and vibration are in 

phase), whereas at very high frequencies the phase shift is , hence, the oscillation of the 

mass m is in counter phase to the excitation. 

Most interesting is the system behavior for =1, i.e. if the excitation frequency  is equal 

to the eigenfrequency 0 of the undamped system. This case is called �resonance�, one of 
the most important phenomena known for oscillatory systems of any kind (not necessarily 

only for a mechanical system). 

It is important to mention that the definition of resonance is not made based on the 

maximum response amplitude (amplification), as most often wrongly assumed, but on the 

phase shift . By definition resonance occurs when the phase shift  is /2. 

The most known and feared effect from resonance is the large amplification of the system 

response (see figure 1.7). For very small damping coefficients a huge system response 

can occur even if the excitation force is very small. This can lead to a system collapse 

due to an excessive vibration amplitude. 
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Figure 1.7: Phase shift  and amplification a as a function 

of the dimensionless frequency  for different damping coefficients 

 

Figure 1.8: External force f(t) and oscillation xP(t) for  = [0.5, 0.8, 1, 2] 

(0 = 1 rads-1) 
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For reasonable damping coefficients  the resonance phenomenon becomes weaker, i.e. 

the amplification factor a does not become infinite any more as in the case of =0. 

However, amplification still has a maximum near the resonance frequency. Note, that this 

maximum always occurs at a frequency slightly below the resonance frequency (<1), a 

fact which can also be seen in figure 1.7. 

1.4.3. Generalization of the Frequency Response 

In the previous section we have derived the phase shift  and the amplification a of the 

system response of the simple 1 DOF damped oscillator: 

 

   22
2

;tan(





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







 




 a  (1.27/1.28) 

This finding can be generalized by a transformation of the time domain signals into the 

frequency domain by means of the so-called �Laplace� transform. Without any proof this 
is shortly outlined here. 

Starting from the differential equation (1.24) 
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0    (1.24) 

we can carry out the Laplace transform. This step transforms the DE into a polynomial 

equation in the complex frequency variable s: 
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The transfer function G(s) is defined as the quotient X(s)/F(x), hence: 

 



sssF

sXsG
2

1
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)(

)(
2

 (1.33) 

The complex frequency response G(j:) is the transfer function evaluated along the 

imaginary axis, hence for s = j. This yields: 
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

 
  2

1
)(

j
jG  (1.34) 

By comparison of expression (1.34) with (1.27/1.28) one can directly see the very close 

relationship between the expression for the general frequency response G(j) known 

from control theory and the above developed expressions for the phase shift  and the 

amplification factor a: 

      2
0;arg   jGajG  (1.35) 

The �correction� factor 2
0 simply comes in by the fact that the quantity a was defined as 

an amplification of the static displacement x0 (equation 1.26), whereas the frequency 

response links a force to a displacement. 

To summarize: 

Instead of deriving the phase shift and the amplification from the time domain solution � a 

rather cumbersome approach for more complex systems � one can simply derive the 

same quantities directly from the complex frequency response, a much more elegant, fast 

and general approach. As we will see in the next chapter this will also hold for dynamic 

mechanical systems with more than 1 degree of freedom. 
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2. Systems With More Than 1 DOF 

2.1. Introduction 

In reality dynamic mechanical systems always have more than only 1 DOF. In fact, if one 

takes a closer look, such systems even must be considered having an infinite number of 

DOFs, since they must be understood as a so-called �continuum�. 

While there are in fact specialized analytic methods for dealing with a continuum, it turns 

out to be very impractical to consider an infinite number of DOFs. It is a much more 

suitable and practical approach to first get clarity about the question of how many DOFs 

must be considered to be able to describe the physical effects that one is interested in. 

Hence, for example, if one is only interested in looking at a so-called �rigid-body� behavior 
of a structure, it might be enough to consider a 6 DOF freedom system only, whereas it 

will be necessary to consider a higher number of DOF if one also wants to include flexible 

modes that a structure always has. 

In the next sections various dynamic mechanical systems with a different number of DOF 

are analyzed with the aim of developing a more �generalized view� for systems with an 
arbitrary number of degrees of freedom. 

2.2. Undamped Free System with 2 DOF 

A 2 DOF system can be obtained by a straightforward expansion of the simple spring-

mass system to two masses and two springs, as shown in figure 2.1. 
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Figure 2.1: Undamped free 2 DOF spring-mass system 

2.2.1. Equation of Motion 

The equations of motion can be derived analogously to the 1 DOF case. It is again 

assumed that the inertial coordinates have their origin in the position where the springs 

are loaded by the weights. 

For each of the two masses Newton�s law can be formulated: 

  21111 xxkxm   (2.1) 

   2221122 xkxxkxm   (2.2) 

The two expressions can be combined into a matrix formulation: 
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As for the 1 DOF system we obtain a linear differential equation of 2nd order with constant 

coefficients, however in this case as a matrix equation of dimension two. 

The two displacements x1 and x2 can be combined in a displacement vector x. By doing 

this one also directly gets matrices M and K: 
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 0KxxM   (2.5) 

Matrix M denotes the mass matrix of the system, whereas K is the stiffness matrix. 

Otherwise, DE (2.5) is almost identical to the corresponding expression (1.4) of the 1 

DOF case with the only difference that instead of scalar terms matrices and vectors are 

involved. 

2.2.2. Vibration Analysis 

It can be shown that a multi-dimensional homogeneous DE as given in (2.5) can be 

solved in basically the same way as it was done for the 1 DOF system, i.e. by introducing 

a suitable guess function. However, since the solution must allow for different vibration 

amplitudes for each of the masses, a vector x~  containing those amplitudes as its 

components must be introduced as well: 

 tt ee
x
x

t  xx ~
~

~
)(

2

1 








  (2.6) 

With (2.6) inserted into expression (2.5) one obtains the following matrix expression: 

   0xKxM  te ~~  (2.7) 

Here again, since the exponential function never yields 0, expression (2.7) simplifies to: 

   0xKM  ~  (2.8) 

It is clear that the zero vector x~ = 0 satisfies (2.8) which, however, is not what we are 

interested in. Instead of this so-called trivial solution we are looking for a non-zero 

solution for x~ . From linear algebra we know that this is only possible if matrix (2M+K) is 

not regular, i.e. cannot be inverted. The mathematical formulation of this postulation is 

that the matrix�s determinant must vanish: 

   0KM det  (2.9) 

As for the 1 DOF case equation (2.9) is an equation for the determination of those values 

of  that allow for a solution of (2.8). Hence, expression (2.9) constitutes the �eigenvalue 
problem� for the 2 DOF case. The characteristic equation for  resulting from writing down 

the determinant in (2.9) results to: 
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    0211221121   kkkmkkmmm   (2.10) 

Equation (2.10) is a so-called �biquadratic� expression in , hence, the four solutions can 

be found analytically. However, instead of deriving those here, more emphasis is put on 

the generalization of (2.10) resp. of the eigenvalue problem (2.8) resp. (2.9). This 

approach is beneficial since, as we will see further below in a more general case, the 

eigenvalue problem results in most cases in an polynomial expression in  which cannot 

be solved analytically. 

A generalization of (2.8) can be found by multiplying the entire expression with the 

inverse of the mass matrix M and by rearranging the entire expression. One can show 

that the inverse of M always exists for mechanical vibration systems (all masses are 

positive, matrix M is symmetric and positive definite). We obtain: 

   xxKM 1 ~~     (2.11) 

Expression (2.11) denotes the special eigenvalue problem for a conservative mechanical 

system. Here, the values of  are the eigenvalues of the matrix KM 1 . For every 

eigenvalue  a so-called eigenvector x~ exists so that (2.11) is satisfied. The number of 

existing solutions for  and associated eigenvectors x~ is always twice the dimension n of 

the matrix KM 1 , hence, for the given 2 DOF system, this quantity is 4. For the 

conservative case (2.11), all eigenvalues  exist as complex conjugate pairs with 

vanishing real part. The relationship between eigenvalue and eigenfrequency is given by 

(2.12): 

 nij ii 2...1;    (2.12) 

The eigenvalue problem of the 1 DOF case can be considered nothing else than a special 

case of (2.11). This can easily be verified by comparison with the corresponding 

expressions (see chapter 1). Also the number of solutions, 2 in the 1 DOF case, 

corresponds to the above findings. 

The abstract geometric relevance of (2.11) is the following: For every matrix, here for the 

matrix KM 1 , there exist unique vectors, the eigenvectors x~ , so that the vector 

obtained by mapping with the matrix, hence the product of the matrix and the vector, point 

in the same direction as the original vector and is scaled by the eigenvalue. This is not 

self-evident since, for an arbitrary matrix and an arbitrary vector, the product of the two is 

a vector that normally points in a different direction, hence corresponds to a scaling plus 
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a rotation of the original vector. For the eigenvector, however, only a scaling takes place 

when multiplied with its corresponding matrix. 

Apart from its geometric meaning the eigenvalue problem (2.11) is of greatest importance 

in every vibration system (not only mechanical), since it constitutes the conditional 

equation system for the eigenfrequencies and the eigenvectors. As we can see the 

eigenfrequencies and eigenvectors are only determined by the properties of the system, 

here by the mass matrix M and stiffness matrix K. 

In the 1 DOF case the eigenvector didn�t show up directly, since only one coordinate was 
considered. In the 2 DOF case, as in the general case, the eigenvector associated with 

every eigenvalue becomes very important. It contains the physical size of each 

component relative to all other components, hence, the form of the vibration. Therefore, 

the eigenvector is also called �mode shape� or �eigenmode�. 

 

Figure 2.2: Qualitative sketch of the eigenmodes of the 2 DOF spring-mass system 

In figure 2.2 the eigenmodes for the two resulting eigenfrequencies of the system are 

qualitatively shown. When oscillating in the low frequency eigenmode the two masses 

basically move up and down in phase, whereas in the high frequency eigenmode the two 

masses move in counter phase. Common to any eigenmode, however, is the fact that all 

masses involved oscillate with the same frequency, the eigenfrequency. The general 

oscillation is given by a superposition of the two eigenmodes (see also equation 2.25). 
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2.3. Damped Free System with 2 DOF 

As done for the simple 1 DOF spring mass system viscous dampers can be added to the 

2 DOF system in order to obtain a more practical model, hence the system will be no 

more conservative. If the dampers are mounted in parallel to the springs the following 

matrix DE results: 

 






























































0

0

0

0

2

1

211

11

2

1

211

11

2

1

2

1

x
x

kkk
kk

x
x

ddd
dd

x
x

m
m








 

  (2.13) 

Analogously to the damped 1 DOF system we obtain the so-called damping matrix D 

which, in this case, has the same structure as the stiffness matrix K (not so in general). 

Equation (2.13) can also be written as 

 0KxxDxM    (2.14) 

The search for the solution of (2.14) leads us again to the eigenvalue problem, i.e. the 

equation system for the definition of eigenvalues (eigenfrequencies) and corresponding 

eigenvectors (eigenmodes): 

   0xKDM  ~  (2.15) 

The characteristic polynomial resulting from the general eigenvalue problem (2.15) by 

formulating the zero determinant condition will not be biquadratic any more, hence, it will 

be a general polynomial of order 4 in . An analytical solution to this problem is difficult to 

find and, consequently, numerical methods will have to be applied. For doing this (2.15) 

must be brought into the special form of an eigenvalue problem, as done in (2.11). 

However, by left multiplication with the inverse of the mass matrix M, one does not obtain 

such a desired form. We will see further below (section 2.5.2) how this eigenvalue 

problem can be solved in general. 

2.4. Gyroscopic Free System with 2 DOF 

The following system constitutes a strongly simplified model of a gyroscopic system as it 

appears in rotordynamics. It consists of a disk rotating with constant speed and carrying a 
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mass that can move in two directions (xR, yR) relative to the disk and that is attached to it 

by two springs: 

 

Figure 2.3: Simple gyroscopic system 

The differential matrix equation can quite easily be derived in the rotating reference 

frame, i.e. if coordinates xR and yR are used: 
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 (2.16) 

As we can already see the structure of this matrix DE is a bit different from what we have 

encountered before. Especially the �damping� matrix is not symmetric and additionally 
depends on the rotational speed . We call such as system with a skew-symmetric speed 

dependent term a �gyroscopic� system with the matrix G containing the gyroscopic terms. 

Consequently, the DE can be written as: 

 TGG0KxxGxM  ;  (2.17) 

The eigenvalue problem for (2.17) is similar to the case with damping and cannot, in 

general, be solved analytically. 

Note that, for a system to be gyroscopic it always needs an even number of degrees of 

freedom. 
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Remark: 

The simple model used in this section is, strictly speaking, not gyroscopic � it only appears to be gyroscopic when 

rotating coordinates are used for its description. One can show that, after transformation of DE (2.16) into the inertial 

system (x, y) using ordinary coordinate transformation matrices, the gyroscopic matrix vanishes and a purely 

conservative system (M, K) results. However, it was the aim of this section to show that skew-symmetric speed 

dependent terms in a matrix DE can occur and that their physical origin is completely different from damping effects. 

Gyroscopic effects resulting in skew-symmetric matrices always occur in rotating machinery. We will study gyroscopic 

effects further below when discussing rotordynamics. 

2.5. Generalization to n DOF (Multi-DOF System) 

2.5.1. Equation of Motion of a Multi-DOF System 

As we already assume very straightforwardly a dynamic mechanical system having more 

than 2 DOF and constant parameters (time invariant system) must also be describable by 

a matrix DE formulation as derived above. In fact, one can show that any such system 

follows the description: 

 nxnRt  QP,M,fQxxPxM ;)(  (2.18) 

In (2.18) M is the mass matrix of the system. For a system with n DOF the dimension of M 

is also n. Furthermore, a system description by choosing appropriate coordinates can 

always be found so that the M is symmetric (M = MT) and positive definite. 

The right hand side of (2.18) is a general force vector with a general time dependency, 

rendering the DE inhomogeneous. We have seen in chapter 1 that the analysis of the 

response to an external excitation force is very important. This, of course, also holds for 

multi-DOF systems. 

The general matrices P and Q for the speed and displacement dependent terms in (2.18) 

can always be split up into their symmetric and skew-symmetric components (this is 

possible for any matrix). By doing this we can introduce the symmetric damping matrix D 

and the skew-symmetric gyroscopic matrix G. Moreover, we obtain a new matrix unknown 

until now: the so-called non-conservative matrix N, which is also skew-symmetric, 

whereas the symmetric part of Q is the well-known stiffness matrix K: 
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     PGDPPGGPPDD  ;
2
1

;
2
1 TTTT  (2.19) 

     QNKQQNNQQKK  ;
2
1

;
2
1 TTTT  (2.20) 

With equivalences (2.19) and (2.20) the DE (2.18) can be brought into the standard 

description of any dynamic mechanical multi-DOF system: 

     )(tfxNKxGDxM    (2.21) 

As already mentioned above the mass matrix M is always positive definite. For many (but 

not all) systems this also holds for the damping and stiffness matrices D resp. K. The 

property �positive definite� is important when investigating stability aspects of such a 

system. This, however, is not subject of this short lecture course. 

2.5.2. Solution of the Multi-DOF Eigenvalue Problem 

As outlined above along with simple 1 and 2 DOF examples the analysis of mechanical 

vibration systems as given by (2.21) always leads to an eigenvalue problem by which the 

frequencies of oscillation and the corresponding mode shapes, which are unique to every 

system, can be derived. We have also seen that the eigenvalue problem always yields 

eigenvalue solutions twice as many as the number of DOF n. This directly follows from 

the fact that mechanical DE are always of 2nd order (Newton�s law). Since the system is 
real, its eigenvalues and eigenvectors usually show up as complex conjugate pairs, 

however, purely real eigenvalues and eigenvectors are possible as well. 

As pointed out above it is, in general, not possible to find an analytical solution to the 

eigenvalue problem of a multi-DOF system. Moreover, we have seen in equation (2.15) 

that in the general case a classic eigenvalue problem, as e.g. given by (2.11), cannot be 

obtained on the basis of the matrix DE (2.21). This is basically due to the fact that the DE 

of a mechanical system are of 2nd order. 

However, a special eigenvalue problem can be formulated for (2.21) if the problem is 

transferred in the so-called state space. The basic idea is to formulate a set of differential 

equations of 1st order rather than of 2nd order. This can be achieved by introducing the 

state vector z containing the displacement vector x and the velocity vector x : 
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For the eigenvalue analysis we only need the homogeneous part of matrix DE (2.21). 

With the help of state vector z, equation (2.21) can be identically written as: 
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The 2nd order matrix DE system (2.21) has now been transformed into a 1st order matrix 

DE for z. The dimension of matrix A, however, is 2n, hence, twice the dimension of the 

physical matrices (M, K, etc.). Note that the state space matrix A contains all the 

information about the mechanical system (M,D,G,K,N matrices), thus, equation (2.23) 

must yield the identical eigenvalues as the original system (2.21). These eigenvalues 

can now be found by setting up the well-known guess function for z: 

   0zAIzz  ~~ te  (2.24) 

Matrix equation (2.24) is the classic special eigenvalue problem. The 2n eigenvalues  of 

A and the corresponding eigenvectors z~  can be found numerically by means of any 

matrix computation software (e.g. by MATLAB®). Note again that these eigenvalues  are 

identical to the eigenvalues of (2.21). As z contains the mechanical system�s vibration 

amplitudes and its velocities (expression (2.22)), the mode shapes of the original 

mechanical system can be easily obtained. 

2.5.3. Time Response of a Multi-DOF System 

Once, the eigenvalue analysis has been carried out the time response of the 

homogeneous system (no external excitation) can be obtained by a superposition of all 

eigenmodes oscillating with their eigenfrequencies. Completely analogously to (1.19) we 

obtain for the general vibration description: 
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The (complex) constants Ck have to be determined from the initial conditions (t=0) of the 

oscillation. 
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2.5.4. Frequency Response of a Multi-DOF System 

A most important and powerful analysis tool for any kind of vibration system is the 

frequency response. As shown in sections 1.4.2 and 1.4.3 the frequency response can be 

derived from the system�s transfer function by setting the complex frequency variable s to 
j, which corresponds to examining responses to purely harmonic excitations. In the 

multi-dimensional case frequency responses also become multi-dimensional, i.e. instead 

of transfer functions so-called transfer matrices G(j) must be considered, whose 

elements gij(j) describe the frequency response relationship from the j-th input of the 

system to its i-th output. 

From equation (2.21) the frequency response matrix, i.e. the relationship between the 

multi-dimensional excitation F and the displacement vector x can be easily derived: 

    1
)(

  GDNKMG jj  (2.26) 

The similarity between (2.26) and the 1 DOF result (1.34) can easily be seen. 

It is very essential to note here that each element of the frequency response matrix G(j) 

contains information about the entire system dynamics, i.e. all eigenvalues of the system 

are contained in every single element gij of G(j), a property which is of great help for 

system identification based on measurements (mathematically, this can be explained by 

the fact that the inverse of a matrix involves its determinant, and that the determinant 

contains all eigenvalues). Hence, it can be enough to measure one single transfer 

function element from one input to one output of a multi-DOF system to visualize all 

system eigenfrequencies. Such a measurement will be very similar to the resonance plot 

given in figure 1.7 for the damped 1 DOF system, but will generally show up more than 

one resonance peak (eigenfrequencies i). In figure 2.4 the frequency response 

(amplitude) of an arbitrary multi-DOF system is shown (element i-j): 
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Figure 2.4: Multi-DOF frequency response element 

The property of the full dynamic content in each element of the frequency response matrix 

G(j) is practically used in the so-called �modal analysis� concept, a widely used 
approach for flexible structure identification. We will also make use of this concept further 

below when measuring transfer function elements by means of an active magnetic 

bearing (AMB) system in order to identify its bending modes. 

2.6. Discretization of Continuous Systems, Finite Elements (FE) 

As stated in the introduction to this chapter dynamic mechanical systems are so-called 

�continua� and, therefore, feature an infinite number of DOFs in reality. It is still possible 

to derive differential equations for such continua, however, these DE cannot be described 

by a set of linear 2nd order DEs with constant coefficients, as done before. In fact, the 

formulation of the equations of motion for continua always results in so-called �partial� 
differential equations, containing not only derivatives with respect to the time but also with 

respect to the physical coordinates involved. This can most easily be shown along with a 

simple example of an elastic beam fixed at its one end (figure 2.5): 
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Figure 2.5: Elastic beam as a continuous mechanical vibration system 

The derivation of the partial DE for the simple example is not shown here. Apart from the 

physical properties (mass m, length L, cross section A, bending stiffness EJ) the result 

involves partial derivatives of the displacement function v(x,t) with respect to the 

coordinate x (v�, v��, etc.) and with respect to the time t (v ,v , etc.): 

 0''''  EJv
m
Lv  (2.27) 

A solution to (2.27) cannot be found analytically, however, it can be shown that, here 

again, an eigenvalue problem as shown in (2.24) will come up, from which the 

corresponding eigenfrequencies and mode shapes can be computed. Differing from multi-

DOF systems this eigenvalue problem leads to a so-called transcendental equation that 

has to be solved numerically. The effort for doing this is already rather complicated for 

this very simple example. It is obvious that, for more elaborate and realistic continuous 

systems, complexity will even be higher. 

Therefore, we must think of different methods to deal with �continuous� structures. One 
possibility is to virtually split up the system into parts where masses are concentrated and 

other mass-less parts where e.g. stiffnesses are concentrated. This approach ends up 

with a multi-DOF system description as introduced above (equation 2.21) involving 

matrices M, D, G, K, N for the discretized system, which can then by analyzed using the 

concepts shown above. However, it is often difficult to �decide� how to split up the system, 
i.e. how to carry out such a discretization manually. 

A more theoretically founded method that leads to the same discrete multi-DOF system 

description (2.21) is the well known �finite element� (FE) approach. Today, FE modeling 
techniques have become very common since appropriate software packages and enough 

computing power are available. Compared to the FE approach other techniques such as 

�finite difference� modeling have, nowadays, become unimportant. 
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The theory of FE modeling cannot be looked at in detail here. However, the basic idea 

and concept can shortly be outlined. 

The continuous structure is divided into sections, i.e. volume elements, where physical 

properties, such as mass, stiffness and geometric properties, do not change. For these 

elements the underlying DE must be known, hence must be available in the form of a 

multi-DOF system (2.21). This information is provided by the available elements within the 

FE software package. Element descriptions can also be found in literature. After definition 

of all elements, boundary conditions, initial conditions and external forces, the FE 

software package combines all single element descriptions into one global description by 

considering the known element dynamics as well as the transition conditions between the 

elements. This process ends up in setting up the global M, D, G, K, N matrices from the 

known basic element matrices. A sketch of this process is displayed in figure 2.6: 

 

Figure 2.6: Finite element (FE) model setup process: from the local element matrix to 

the global system description matrix 

FE modeling techniques are widely-used in the field of rotating machinery for the 

modeling of flexible rotors. For this case special axially symmetric FE rotor elements 

containing gyroscopic effects are used. Typical input data for each element of such a FE 

rotor model consists of the following information: 

 geometric data (coordinates, diameters, element length) 

 mass (density) 

 stiffness data (Young�s modulus, Poisson�s ratio, etc.) 

 additional inertia not contributing to stiffness (e.g. lumped masses) 

 element couplings 

 external forces 

A typical example of FE modeling for rotor systems will be treated in the tutorial to this 

lecture course. 
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3. Rotordynamics of Active Magnetic 
Bearing (AMB) Systems 

3.1. Introduction to Active Magnetic Bearing Systems 

Active Magnetic Bearings (AMBs) can completely support a body by magnetic forces 

without any mechanical contact. Of technical interest are, in a first place, the 

ferromagnetic forces, which can be generated by permanent magnets or by actively 

controlled electromagnets. It has been known for a long time, however, that stable 

contact-free suspension in all degrees of freedom (DOFs) cannot be achieved by 

permanent magnets only, at least one active element is always necessary for stabilization 

of such a system. Magnetic bearings based on permanent magnets are passive elements 

unable to control rotor vibration actively. Passive systems are not covered in this short 

course. 

Active systems were built as early as 1938 (Kemper, Germany) for experiments and later 

for momentum wheels in space applications. Due to the enormous progress achieved in 

electronics, the number of industrial applications in various fields has considerably 

increased during the last 20 years. A survey can be found in the literature, especially in 

the Proceedings of the International Symposium on Magnetic Bearings (ISMB).  

Thanks to their physical principle, magnetic bearings have some unique and very 

interesting properties.  

 Magnetic bearings work without any mechanical contact. Therefore, the 

bearings will have a long life with much reduced maintenance and with 

low bearing losses. Since no lubrication is required, processes will not be 

contaminated, which constitutes another important advantage over 

conventional bearing technologies. AMB systems can also work in harsh 

environments or in a vacuum. 
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 The reduced maintenance and the possibility for omission of the complete 

lubrication system lead to considerable cost reductions. 

 The rotational speed is only limited by the strength of the rotor material 

(centrifugal forces). Peripheral speeds of 300 m/s are a standard in state-

of-the-art AMB applications, a value not reachable by most other 

bearings. 

 The electromagnetic bearing is an active element which enables accurate 

shaft positioning and which makes its integration into process control very 

easy.  The vibrations of a rotor can be actively damped. It is also possible 

to let the rotor rotate about its principal axis of inertia to cancel the 

dynamic forces caused by the unbalance. 

 Due to their built-in sensors and actuators AMB systems are perfectly 

suited for not only positioning and levitation of a rotor but also for serving 

additional purposes such as monitoring, preventive maintenance or 

system identification. These important features are possible without the 

need for any additional instrumentation. 

Following from the mentioned features it can be found that an AMB system is a typical 

mechatronic product including a mechanical system part (rotor), a sensor, an actuator and 

a controller providing the AMB system with some level of �artificial intelligence�. 

3.2. The Functional Principle 

3.2.1. A Simple 1 DOF AMB System 

The basic functional principle of an AMB can be briefly described as follows (figure 3.1). 

The system itself is inherently unstable. This instability is caused by the attractive forces 

of the electromagnets. Therefore, active control of the magnets is necessary. For this. a 

sensor measures the displacement x of the supported rotor. A controller, nowadays most 

often a digital controller on the basis of a signal processor or microprocessor, uses the 

sensor information to derive an appropriate control signal u. This control signal is 

amplified by a power amplifier to drive the control current in the coil. The coil current 

together with the ferromagnetic material in the path of the coil causes a magnetic force to 

act on the rotor. 
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The electromagnetic force has to be calculated by the controller in such a way, that the 

rotor remains in its predefined and stable hovering position. Basically, the control 

operates in such a way that, when the rotor moves down, the sensor produces a 

displacement signal which leads to an increase in the control current. The increasing 

electromagnetic force then pulls the rotor back to its nominal position. 

 

Figure 3.1: Basic principle of an active magnetic bearing (AMB) 

3.2.2. Technical Realization of an AMB System 

It is clear that a technical realization of the principle mentioned above, hence the 

levitation of a (rigid) rotor with six DOF, needs several bearing actuators. Most often they 

have to be interconnected by a multi-variable control. Figure 3.2 shows an example of a 

rotor assembly completely supported by two radial bearings and one thrust bearing. 

Therefore, five degrees of freedom have to be controlled (the 6th DOF of the rigid body is 

the angular rotor position and is usually controlled by a motor). 
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Figure 3.2: Technical realization of an AMB rotor system 

Electromagnets: 

It is important to see that, for each actuator channel, usually a pair of magnets is 

necessary, since electromagnets can only exert pulling (attractive) forces (in the example 

of figure 3.1 the rotor weight was used instead of an opposite magnet for �generating� a 
force opposite to the upper magnet, an approach which is only possible for specially 

configured systems). Consequently, a radial bearing most often consists of four bearing 

magnets, special configurations only using three magnets for two DOF are possible as 

well. 

In general, AMB stators look rather similar to the stators of a motor, i.e. they consist of a 

stack of laminated soft-magnetic iron sheets. There are also attempts to combine the 

motor and bearing function in one single actuator. Such an approach is feasible for simple 

applications where the performance losses due to the need for comprising on both motor 

and bearing function are not important. 
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Sensors: 

The sensors of an AMB system must measure the rotor position in a contact-free manner. 

In most applications eddy current or inductive sensors are used. Other possibilities 

include optical sensors, flux density sensors or a direct calculation of the position by 

using the current and voltage signals in the coils (so-called �self-sensing� bearing�). 

Controller: 

The controller hardware can be built either in analog or in digital technique. Because of 

their great flexibility, digital controllers have become more interesting recently. For high 

dynamics, µPs in multi-processor arrangements or DSPs are used. 

The control signals generally depend on each other, i.e. each bearing force will depend 

on all sensor signals (so-called �centralized� or �Multiple Input Multiple Output� (MIMO) 
control). In some cases it is possible to control a pair of electromagnets only from their 

neighboring sensor (so-called �decentralized� or �Single Input Single Output� (SISO) 
control). If a SISO PID control scheme is applied to such a system, a pair of 

electromagnets will behave very similarly to a conventional spring damper element, with 

the advantage, though, of generating the forces in a contact-free manner and of being 

able to adapt the bearing characteristics any time to the operating requirements. 

State-of-the-art control design techniques are PD, PID, optimal output feedback, observer 

based state feedback,  synthesis and H∞ approaches (MIMO and SISO). The axial 

control is usually decoupled from the radial channels and can be designed separately 

(SISO). 

Power Amplifier: 

Current power amplifiers in either analog (linear) or switched technology are used. For 

high power applications, switched amplifiers are preferred on account of their lower 

losses. Here again, AMB power amplifiers show a high level of similarity to motor 

controllers. 

3.3. System Dynamics 

As mentioned in chapter 2 the mechanical part of an AMB system, in most cases the 

levitated rotor, can be modeled as a so-called M,D,G,K,N system (see equation 2.21). 

The dimension of the matrices depends on the modeling approach (rigid body model, FE 
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model, etc.). For the AMB controller design it is, in most cases, necessary to include 

some of the lower frequency flexible modes in the model, especially when so-called 

super-critical systems are considered where the rotational speed is above the 

eigenfrequencies of one or several bending modes. 

In general, also the dynamics of the sensors, actuators and power amplifiers have to be 

considered. These systems are non-mechanical and, therefore, cannot be described by 

equation (2.21). However, a description of the system dynamics of such systems is 

always possible in the state space. Consequently, all system components, including the 

mechanical part, will be described by a state space description as shown in equation 

(2.23), augmented by the elements of the non-mechanical parts of the system. 

In this lecture course we only focus on the mechanical part of the plant, hence, we 

assume that the dynamics of the other system elements are not important, i.e. that their 

typical time constants are much smaller than those of the mechanical plant. For many 

systems this simplification can be made without loss of important information. 

3.3.1. Zero Speed AMB Rotor Model 

In the following, for simplicity, emphasis is put on the investigation of the dynamic effects 

resulting from the radial motions of an AMB rotor. As mentioned, the axial motion is 

completely decoupled from all other motions and, correspondingly, this part of the 

dynamics can be modeled as a simple SISO system not being of particular interest here. 

 

Figure 3.3: Simple rigid rotor model (beam model) 
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In figure 3.3 a simple rigid body rotor in AMBs is displayed. In a first step we only 

consider the rotor motion in one plane (x-z plane). It is obvious that this system only has 2 

DOF, e.g. the position measured in each bearing. Therefore, the model description could 

be based on the two bearing resp. sensor positions xA and xB. For the subsequent 

analysis, however, it is more suitable to consider two other displacement signals, the 

position of the rotor�s center of gravity C and the tilting angle  about the y axis. The 

transition between both coordinate systems resp. both model descriptions can be made 

by appropriate coordinate transformation matrices. 

When using the center of gravity coordinates, system description becomes very simple 

and involves the rotor mass m and the rotor�s moment of inertia Iy about the transverse 

axis y (Newton�s and Euler�s laws used for derivation of the matrix DE). Note that 
geometry parameters used in the model are sign-extended (length a is usually a negative 

quantity since the A bearing position has a negative z coordinate). 
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Expression (3.1) is not intuitively recognizable as being of the type given by (2.21). 

However, when the concept of feedback control is introduced, the forces fA and fB become 

functions of the displacements x resp. and of their derivatives, hence, the force term on 

the right hand side of equation (3.1) can be moved to the left hand side. For the example 

of a very simple decentralized PD feedback, where the forces are a linear combination of 

the displacements and velocities in the bearings, equation (3.1) can be brought into the 

general form corresponding to (2.21): 

 BBBBBAAAAA xdxkfxdxkf   ;  (3.2) 
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Hence, for such a decentralized feedback the system becomes of the known type of a 2 

DOF system with mass, damping and stiffness matrices M, D, K: 

 










x

x0KxxDxM ;  (3.5) 

It is obvious that the rotor motion description in the perpendicular y-z plane must be 

identical, since the rotor is symmetric: 
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The reason why the tilting angle  comes in with a negative sign is simply due to the 

coordinate system�s rotation direction convention: A positive rotation  about the y axis 

produces a positive displacement in x direction for a positive z coordinate, whereas a 

corresponding rotation  produces a negative displacement in y direction for the same 

positive z coordinate. By introducing the negative sign for the tilting angle , however, it 

can be achieved that the sub matrices M, D, K are identical in both motion planes, 

something which certainly makes sense for the description of a symmetric system. The 

overall 4 DOF system description now becomes: 
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3.3.2. Gyroscopic AMB Rotor Model 

From equation (3.7) we can guess that the sub systems (motion in x-z plane resp. y-z 

plane) are completely decoupled or, in other words, any disturbance in x direction will not 

generate any displacement in y direction and vice versa. However, it turns out that this is 

only true if the rotor is at stand still. For the rotating system a very important model 

augmentation has to be carried out by considering the momentum vector L. 

In figure 3.4 the instantaneous motion state of a rigid rotor is displayed. The rotor rotates 

about the z axis and, hence, its momentum L(t) is the product of its moment of inertia Iz 

about the rotation axis and the rotation speed . The momentum vector points in z 

direction (direction of rotation). At the time t an external moment of force Mx(t) is applied in 
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x direction. Following Euler�s law the momentum change dL is proportional to the moment 

of force and has the same direction as this moment of force. Hence, the change of the 

momentum dL also points in x direction. Consequently, all material elements on the 

rotation axis will move in positive or negative x direction (except for the center of gravity 

that does not change position in this case). This motion, finally, corresponds to a tilting 

about the y axis with tilting angle . What we would have intuitively expected, however, is 

a tilting of the rotor about the x axis, since the external moment of force is also applied 

about the x axis. 

 

Figure 3.4: Momentum and its change due to a moment of force for a rigid rotor 

A displacement reaction perpendicular to the applied external disturbance is an effect 

well-known from the behavior of a spinning gyroscope. Therefore, the effect is also called 

the �gyroscopic� effect. The fundamental result from it is that the rotor motions in the x-z 

and y-z planes become coupled as soon as tilting is involved. 

In this lecture course we are not going to carry out the detailed derivation of the 

gyroscopic coupling effect on the system�s DE, only the result is presented here. 

Due to the gyroscopic coupling an additional sub matrix G will appear in expression (3.7) 

that involves the rotor�s moment of inertia Iz about the rotation axis and the rotational 

speed : 
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As we can see a skew-symmetric matrix for the velocity term appears in equation (3.8). 

This matrix is the gyroscopic term also contained in (2.21) and first introduced in section 

2.4. It is also seen that the sub matrix G couples the motions in the x-z and y-z planes 

(coupling of tilting angles  and ), which is exactly what we expected based on the 

simple phenomenological approach shown above. 

Matrix DE (3.8) holds for the majority of all AMB systems. The additional introduction of 

non-conservative effects (N matrix) is not necessary in general. 

DE equation (3.8) also holds for the case of flexible AMB rotor systems with more than 4 

DOF. The dimension of the matrices will then depend on the complexity of the model (e.g. 

number of elements in case of FE modeling). A model reduction on the basis of known 

reduction techniques is always possible, however, one should be careful to include 

enough flexible modes in order to make the model representative, especially when having 

to pass through bending critical speeds. 

Finally, it has to be made clear that FE modeling techniques, when based on suitable 

rotor elements, also provide the gyroscopic part of (3.8), for the rigid rotor part as well as 

for the flexible modes. Hence, a good FE model provides all the necessary information for 

a rotordynamic analysis of the rotating system. 

3.4. Rotordynamic Analysis 

This section is intended to shortly investigate the most important effects appearing in 

rotordynamics. Emphasis is put on effects that generally appear, not only in the case of 

AMB systems. Some unique rotordynamic features of AMBs, such as the unbalance force 

cancellation concept, are as well treated in the following sections. 

No investigation of AMB system stability can be carried out here. AMB controller design 

and stability investigation are part of a more control theoretical focus, which cannot be 

covered here. 

Apart from very special rotordynamic effects such as the destabilization due to inner 

damping (non-conservative forces), which can appear in some rare rotor systems, the 

most important phenomena are the dependence of the system eigenfrequencies on the 

rotational speed and the system response to unbalance excitation. These two effects are 

shortly discussed in the following. 
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3.4.1. Eigenfrequencies as a Function of the Rotational Speed 

Based on the rotordynamic description (3.8) the system eigenvalues can immediately be 

calculated using equation (2.24) (state space). It is clear that each system will provide its 

particular eigenvalues and eigenmodes. However, there are some fundamental behavior 

elements common to all rotating systems, whether flexible or rigid, whether in AMBs or in 

conventional bearings. 

From equation (3.8) we can judge that the only dependence on the rotational speed  is 

the skew-symmetric gyroscopic term. Hence, all eigenvalue dependencies on the rotor 

speed are solely coming from this term. Figure 3.5 displays these dependencies for a 

typical rotor system in a so-called �Campbell� diagram (2x4 DOF system): 

 

Figure 3.5: Campbell diagram of a typical flexible rotor system 

Apart from the motion coupling, i.e. from the coupling of the eigenmodes in the x-z and y-

z planes, the gyroscopic terms also effectuate a �split� of the eigenvalues depending on 
the rotational speed. At stand still the eigenvalues of any mode in the x-z plane are 

always identical to the corresponding mode in the y-z plane (symmetric rotor). Hence, 

there are totally 8 but only 4 different eigenfrequencies at stand still. However, with 

increasing speed, each pair of identical eigenfrequencies splits up into one eigenvalue 

that increases and another one that decreases with speed. The eigenmodes with 



42 Chapter 3: Rotordynamics of Active Magnetic Bearing (AMB) Systems 

Modeling and Analysis of Dynamic Mechanical Systems Lar / 07.05.2006 

increasing eigenvalue behavior are the so-called �forward� modes, since their motions 
have the same sense of rotation as the rotational speed itself. Correspondingly, all 

eigenmodes with decreasing eigenvalue dependency are the so-called �backward� 
modes. 

Another general behavior can be attributed to the rigid body modes (low frequency). Their 

zero speed eigenvalues depend on the external stiffness of the system (bearing stiffness). 

When speed increases the two rigid body eigenmodes of each plane become coupled 

and show up as so-called �conical� and �pendular� modes. All modes exist as �forward� 
and �backward� modes. In the case of the conical modes they are called �nutation� 
(forward) and �precession� (backward) mode. The conical modes correspond to the 
modes of a pure gyroscope. 

At high rotational speeds, the influence on the bearing stiffness vanishes for the conical 

modes and the eigenfrequencies become pure determined by the mass and gyroscopic 

terms. Whereas the precession mode�s eigenfrequency approaches zero, that of the 
nutation mode asymptotically reaches the linear function given by the ratio of the 2 

moments of inertia Ix and Iz. From this knowledge one can always guess the frequency of 

the nutation of a rotor system at high rotation speeds, just based upon the ratio of the 

moments of inertia which can be obtained from a FE modeling process. For this no model 

dynamics analysis is necessary. 

Whereas the conical modes (nutation and precession) are strongly influenced by the 

gyroscopic effects since tilting is involved, the pendular modes become less and less 

influenced by gyroscopic effects with increasing speed, hence, their mode shapes 

become pure translations of the center of gravity in the x-z and the y-z planes. Moreover, 

these motions become decoupled at high rotational speeds and the corresponding 

eigenfrequencies are determined by the mass and the external stiffness, but not by the 

gyroscopic terms. Hence, the behavior of the pendular modes is entirely different from 

that of the conical modes. 

As mentioned above also the bending modes and their eigenfrequencies are influenced 

gyroscopically. The split up of the eigenfrequencies very much depends on the particular 

system. There is no general rule for asymptotic behaviors as for the rigid body modes. 

It is obvious that the knowledge of the Campbell diagram is essential for AMB systems 

with respect to controller design. As plant eigenvalues change, the control must either be 

gain-scheduled with speed, or it must be robust enough to tolerate rotor speed induced 

plant changes. Moreover, mode shapes also change with speed and might, at a specific 

rotor speed, result in a configuration where a sensor is located in a so-called nodal point 
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which features an inherently zero displacement amplitude. In this case AMB control can 

become heavily affected by the gyroscopic effects. 

3.4.2. Unbalance Response 

Another most important rotordynamic effect is the system�s response to unbalance force 
excitation. Unbalances are present in every rotor system since perfect balancing is not 

possible or, if feasible at all, very costly, especially if balancing of the flexible modes has 

to be included. Another possibility for reducing the system�s unbalance response is to 

increase the (external) damping, which, however, is difficult for conventional rotor bearing 

systems. For AMB systems, instead, such an approach is rather straightforward. More 

damping can be introduced by implementing an appropriate controller (see also example 

of damping bending criticals below). If there is only little or no damping present, 

unbalance responses can become very large and dangerous (resonance effect, see 

section 1.4.2). 

In figure 3.6 unbalance response at an arbitrary measurement (sensor) point for the same 

system as discussed in the previous section is displayed for an assumed unbalance and 

for different external damping levels. 

As can be clearly seen the resonance amplification strongly depends on the amount of 

damping, a property already found with the simplest possible 1 DOF system (see section 

1.4.2). 

Astonishing, however, is the finding that only 3 resonance peaks are visible, whereas, 

according to the Campbell diagram, there are 6 eigenfrequencies in the range of the 

rotational speed (forward/backward conical mode, forward/backward pendular mode and 

forward/backward 1st bending mode). This finding is an important property of every rotor 

system: As unbalance is a force excited by the rotation itself, it must be considered not 

only a harmonic force but a harmonic force with a given sense of rotation. This sense of 

rotation is always �forward� for the unbalance excitation and, hence, only the forward 
eigenmodes can be excited by the unbalance. 

Note that, by any different kind of harmonic excitation, all the eigenmodes (forward and 

backward) can be excited. It is also essential to notice that a particular resonance peak 

might not be visible at all available measurement points. This corresponds to the 

�controllability� and �observability� properties known from control theory and can happen 
when a vibration node is located either at a sensor or at an actuator position. 
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Figure 3.6: Unbalance response of a typical flexible rotor system 
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3.5. Special Features of AMB Rotor Systems 

3.5.1. Infinite Static Stiffness 

Active control allows for compensating of long term displacement deviations by using an 

integral feedback. By feeding back the integral of the sensor signal, the bearing force will 

keep increasing until there is no deviation between the desired and the actual rotor 

position, independently on the level of the external force (as long as the bearing�s load 
capacity is not reached). This is often thought of as having an infinite static stiffness. 

Integral feedback compensates for static forces, as for example for the rotor weight. 

Without integral feedback the rotor weight leads to a displacement according to the 

stiffness given by the proportional term of the PD controller. 

A PD controller with additional integral feedback is called a PID controller. For slow 

integration speed the integral feedback has a very limited interference with the 

proportional feedback and, consequently, the eigenvalues of the PD controlled system do 

not change much, however an additional eigenvalue for each integrator is added to the 

system. 

The possibility of providing a virtually infinite static stiffness is an important advantage of 

AMBs over conventional bearing solutions. 

3.5.2. Unbalance Force Rejection 

Another most important advantage of AMB systems is their ability to adaptively cancel the 

effect of unbalance force on the machine vibration. 

Unbalance excitation is a major concern in rotating machines. Since the unbalance forces 

are well correlated with the rotational speed, i.e. they have an amplitude and phase angle 

relative to the rotor which only depends on the rotational speed, their controller response 

can be eliminated by adding a suitable signal to the bearing system. A block diagram of 

such an unbalance force rejection scheme is shown in figure 3.7. 

A so-called �Unbalance Force Rejection Control� (UFRC) block is added to the standard 
feedback loop of plant (rotor) and controller. The UFRC provides an extremely narrow 

band filtering of the controller input signal such that only the rotation speed synchronous 

harmonic component can pass. This component is subtracted from the original sensor 

signal such that the controller input is free of any synchronous signal component. 

Therefore, also the controller output is free of such components, which is equivalent to 

not generating any synchronous reaction forces. In other words: Despite of the existing 
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unbalance the rotor can rotate force-free about its principal axis of inertia and no 

synchronous vibration forces are transmitted to the machine foundation. 

 

Figure 3.7: Unbalance force rejection control scheme (UFRC) 

This unique property is only possible thanks to active control and thanks to the fact that 

AMBs operate without contact. With a mechanical contact given, forces would 

immediately be generated due to the non-zero rotor orbit. 

UFRC is also usable within the rigid body critical speeds. If properly parameterized for 

overall system stability, it can theoretically operate down to zero speed. At zero speed 

UFRC is identical to the so-called �zero power� control concept. 

The operation of UFRC is limited to suitably small unbalance levels, i.e. UFRC can only 

work as long as the rotor orbit is smaller than the touch down bearing gap. In practice, 

however, this limitation is never met, and most AMB rotors can be operated perfectly 

without any need for balancing at all. With conventional bearings, though, zero vibration 

force transmission is only possible by perfect balancing. 

It is important to emphasize that UFRC does not carry out any balancing of the rotor. 

Instead, UFRC only allows for force-free rotation about the rotor�s principal axis of inertia 
in the presence of unbalances. However, in some literature this concept is also 

misleadingly called �ABS� (�Automatic Balancing System�). 

3.5.3. Active Vibration Control in Bending Criticals 

A variation of UFRC can be used for passing critical speeds. While, for a realistic rotor 

with very small inner damping, it is physically not possible to pass bending critical speeds 

(resonances) in a force-free way, i.e. with a pure UFRC scheme, UFRC can provide 
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another purely harmonic and synchronous output signal that serves for generating an 

active damping force at the controller output. A corresponding block diagram is shown in 

figure 3.8. 

 

Figure 3.8: Adaptation of UFRC for critical speed damping 

Note that the necessary damping for passing a bending critical is not achieved by the 

standard controller, whose synchronous signal remains cancelled by the conventional 

UFRC scheme at its input. Instead, the damping force is solely generated by the 2nd 

output signal of the UFRC block. In figure 3.9 the effect of synchronous damping on the 

vibration amplitude is shown. 

 

Figure 3.9: Synchronous damping effect on the critical speed amplitude 
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3.5.4. Built-In Instrumentation for System Identification and Monitoring 

As already mentioned AMBs are not only an interesting bearing device with actively 

adjustable characteristics, but they can also serve as an excellent monitoring system. The 

displacement sensors in cooperation with suitable controller functionalities allow for 

measurement and identification of the behavior of the rotor system. In addition to its 

levitation function the magnetic bearing actuators can be used as an excitation device for 

driving the rotor into a desired state, e.g. into a steady-state harmonic vibration with a 

given amplitude and a predefinable frequency. This concept directly allows for the on-line 

measurement of system frequency responses, without the need for any additional 

instrumentation and without having to carry out any hardware adjustments for 

measurement signal access. 

Appropriate AMB controllers can provide the following monitoring and diagnostic tools: 

 on-line displacement monitoring 

 on-line dynamic force measurement and monitoring 

 on-line unbalance measurement and monitoring 

 identification and monitoring of process forces 

 identification of critical speeds 

 system identification (eigenvalues, mode shapes) 

 step response, harmonic perturbation response, etc. 

If the controller is based on a microprocessor system most of the monitoring and 

diagnostic features can be provided by software packages, without the need for additional 

hardware. For doing this, suitable excitation input points have to be defined in the digital 

feedback control architecture. Moreover, signal processing algorithms such as an FFT 

have to be implemented on the AMB controller. In figure 3.10 possible excitation points in 

an AMB control loop are shown: 
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Figure 3.10: AMB feedback loop with additional excitation inputs for system 

identification and monitoring 

By means of excitation inputs such as E resp. EU (see figure 3.10) and by suitable signal 

processing algorithms and communication tools virtually any transfer function from any 

input to any output signal can be directly measured on the AMB system and then 

transferred to a host computer for further analysis and display. Moreover, it is possible to 

measure SISO or MIMO transfer functions. Hence, a complete transfer function G(j) as 

given by equation (2.26) can be directly measured on-line and compared with the result 

obtained from the FE model introduced in equation (2.26). The comparison result can be 

used for updating the FE model, e.g. for adjusting the eigenfrequencies. A better model 

can then serve as a basis for an improved controller design. 

Apart from this plant identification possibility other important system properties such as 

the sensitivity function or the complementary sensitivity function for verifying the controller 

performance and robustness can be easily obtained by suitable on-line measurements, a 

unique feature which is extremely important during the controller tuning phase of AMB 

systems. 

Finally, effects resulting from non-modeled system dynamic components can be easily 

recognized in the measurements and can help in the optimization of the overall system 

performance.  
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