

CORSO DI ORDINAMENTO

Indirizzo: MECCANICA

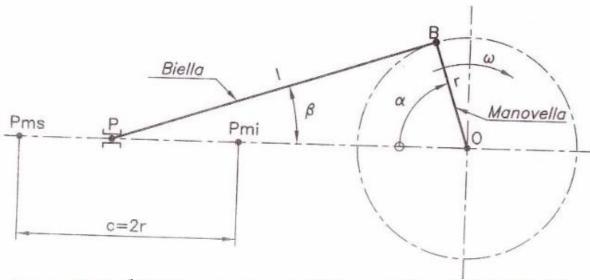
Tema di: DISEGNO, PROGETTAZIONE ED ORGANIZZAZIONE INDUSTRIALE

Una pompa a stantuffo, a semplice effetto, è azionata da una manovella d'estremità che ruota alla velocità di 150 gir/min.

I dati di targa della macchina sono:

- portata Q = 15 dm³/s di acqua;
- prevalenza totale: 80 m di colonna d'acqua.

Il candidato, dopo aver fissato opportunamente i rapporti caratteristici del manovellismo e ogni altro dato occorrente, esegua:


- il disegno schematico del manovellismo, dal quale risultino le quote degli elementi principali necessari per la definizione della geometria;
- il dimensionamento del perno di estremità della manovella, nell'ipotesi che sia interposta una bronzina fra esso e la biella;
- il disegno di fabbricazione del perno stesso, completo di quote, tolleranze e grado di rugosità superficiale;
- 4) il ciclo di lavorazione, nell'ipotesi che si debba produrre un lotto di pochi elementi;

Il candidato accenni, inoltre, alle procedure da adottare per effettuare un controllo di qualità.

Maturità 2005 indirizzo: Meccanica

Tema di : Disegno, Progettazione, ed Organizzazione Industriale

1) Rapporti caratteristici del manovellismo

La portata media (m³/s) di una pompa a stantuffo a semplice effetto è data dal prodotto della cilindrata del singolo cilindro che contiene il liquido aspirato ad ogni giro della manovella per:

- il rendimento volumetrico η_v , il quale tiene conto del fatto che la massa di liquido che ad ogni ciclo alimenta la macchina è minore della massa che in teoria dovrebbe riempire il volume ideale V messo a disposizione della cilindrata ($\eta_v = 0.95$ -0.99)
- la velocità di rotazione della manovella n (giri/s)

$$Q = \eta_v \pi D^2 C n / 4 = \eta_v \pi D^3 (C/D) n / 4$$

Sono dati:

portata volumetrica $Q = 15 \text{ dm}^3/\text{s}$ n=150 giri/min = 2.5 giri/sFissato un rendimento volumetrico $\eta_v = 0.95$ ed un rapporto C/D = 1.5

si ricava il diametro del pistone della pompa:

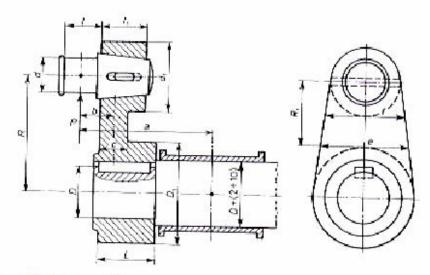
D=175 mm

e quindi la corsa del pistone:

C= 1.5D= 262.5 mm

La velocità media dello stantuffo risulta essere

 $v_m = 2Cn/1000 = 1.31 \text{ m/s}$ (valore accettabile)


il raggio di manovella data la corsa del pistone è:

r = C/2 = 131.25 mm

la lunghezza della biella, fissato un rapporto l/r= 4 (l/r si assume normalmente fra 3 e 5) risulta:

1 = 393.75 mm

2) dimensionamento perno di estremità della manovella

La potenza assorbita all'albero vale:

 $P_a = Q \rho g H / \eta$

dove:

Q= portata volumetrica = $0.015 \text{ m}^3/\text{s}$

 ρ = massa volumica dell'acqua = 1000 kg/m³

 $g = accelerazione di gravità = 9.8 m/s^2$

H = prevalenza totale = 80 m

 η = rendimento totale dato dal prodotto idraulico (0.87-0.97) e dal rendimento meccanico (0.88-0.97) = 0.9

 $P_a = 13066 W = 13 kW$

Essendo:

 $P_a = M_m \omega$

 $\omega = 2\pi n/60 = 15.7 \text{ rad/s}$

il momento motore vale:

 $M_m = P_a/\omega = 828 \text{ Nm}$

Dato il momento motore si ricava la pressione agente sul pistone:

 $p = \pi M_m / Ar$

A= area del pistone = $24040 \text{ mm}^2 = 0.024 \text{ m}^2$

r = raggio di manovella = 131,25 mm = 0.131 m

 $p_{max} = 827.366 \text{ N/m}^2$

Si trascurano, eccetto per velocità molto grandi, le azioni di masse e l'inclinazione della biella e si ritiene (per motrici a vapore, pompe ecc) che la forza P esercitata sul fluido sul pistone valga.:

P = pA = 19.857 N

Si dimensiona il perno del bottone di manovella calcolando il diametro de la lunghezza I in base alla resistenza ed alla pressione specifica massima ammissibile.

Le dimensioni del perno di estremità della manovella, d, si calcola assumendo un rapporto l/d compreso tra 0.9 e 1.3 ed una pressione ammissibile compresa tra 3 e 12 N/mm².

Per la costruzione del perno si utilizza un acciaio da costruzione FE 510 UNI 7070 con una sollecitazione limite alternata di 250 N/mm².

La σ_{amm} si ricava dalla relazione:

 $\sigma_{mm} = K\sigma_{lf}/n$

dove

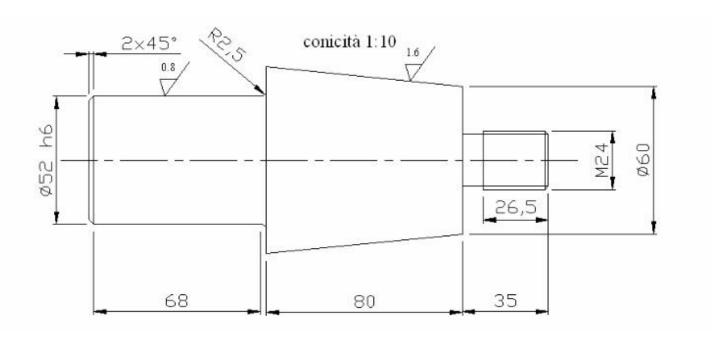
K= coefficiente globale di riduzione compreso 0.4 e 0.6; si assume K = 0.5

n = grado di sicurezza (compreso tra 2 e 2.5); si assume n = 2.5

 $\sigma_{\rm mm} = 50 \text{ N/mm}^2$

Essendo un perno di estremità sollecitato a flessione rotante e a taglio il diametro d, si calcola con la relazione:

$$d >= \sqrt{5P (1/d)}/\sigma_{amm} = 50.8 \text{ mm}$$


assumiamo

d = 52 mm

1 = 67.6 mm

Verifica a pressione $p=P/ld = 5.65 \text{ N/ mm}^2$ (valore accettabile)

3) Disegno di fabbricazione del perno

4) Ciclo di lavorazione

Grezzo di partenza: barra laminata diametro 80 mm

Materiale: FE 510 UNI7070 Lavorazione su barra continua

fase	operazione	macchina
10	Intestatura	Tornio CN
20	Sgrossatura del profilo	Tornio CN
30	Finitura del profilo	Tornio CN
40	Esecuzione filettatura	Tornio CN
50	Troncatura	Tornio CN
60	Rettifica sede bronzina	Rettificatrice
70	Rettifica sede conica	Rettificatrice

Il controllo sarà affettuato con un calibro passa/non passa ed un rugosimetro per la sede della bronzina, con un calibro ventesimale per le altre quote.