Ministero della Pubblica Tstruxione

M430 – ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE

CORSO DI ORDINAMENTO

Indirizzo: TERMOTECNICA

Tema di: IMPIANTI TERMOTECNICI E DISEGNO

Occorre dimensionare, in regime estivo, una centrale di trattamento aria di un impianto di condizionamento a tutta aria, di tipo convenzionale, di un piano uffici costituito da un unico ambiente situato in una città del centro Italia.

L'affollamento previsto è di 160 persone in ambiente di lavoro moderato.

Il calore emesso per persona sia pari a 60 W di calore sensibile e a 75 W di calore latente.

Il carico termico sensibile per differenza di temperatura e per irraggiamento sia di 14.000 W.

Gli apporti di calore sensibile all'ambiente, per illuminazione e macchine, sia di 9.000 W.

Determinare:

- le condizioni termoigrometriche dell'aria di immissione;
- la portata di aria di immissione;
- la portata dell'aria esterna e di ricircolo;
- la potenzialità delle batterie di fiscaldamento e raffreddamento.

Utilizzando il diagramma psicrometrico allegato, si traccino le linee di trasformazione dell'aria nell'unità di trattamento e si disegni, inoltre, lo schema dell'unità di trattamento aria.

Il candidato assuma liberamente ogni altro dato necessario alla soluzione, giustificando tali scelte.

Soluzione

Punto 1 – Calcolo condizioni aria d'immissione

A tale scopo bisogna determinare la retta di lavoro tramite il calcolo del fattore termico R,cioè

 $R = Q_s/Q_T$

Dove Q_S rappresenta il calore sensibile da smaltire, mentre Q_T rappresenta il calore totale somma del calore sensibile e del calore latente Q_L .

Il calore Q_S si ricava dalla somma del calore sensibile Q_P emesso dalle persone più il carico termico sensibile Q_D e gli apporti di calore Q_I per l'illuminazione e macchine, quindi:

 $Q_P = 60x160 = 9600 \text{ W}$

 $Q_D = 14.000 \text{ W}$

 $Q_I = 9.000 \text{ W quindi } Q_S = 32.600 \text{ W}$

Il calore latente $Q_L = 160x75 = 12.000 \text{ W}.$

Il calore totale quindi $Q_T = Q_S + Q_L = 44.600 \text{ W}$

Ouindi R = 0.73

Per calcolare le condizioni di immissione si ipotizza di realizzare l'impianto a Roma con i seguenti dati termoigrometrici esterni e cioè:

 $t_F = 33^{\circ}C \text{ e u.r.} = 50\%$

Condizioni termoigrometriche interne:

 $t_A = 26$ °C e u.r. = 50% (la temperatura t_A per $t_E = 33$ °C oscilla tra 25 2 27°C)

Per la temperatura di immissione t_I essendo di massimo 10°C al di sotto della temperatura t_A si ipotizza uguale a 20°C.

In conclusione di quanto detto e con l'ausilio del diagramma psicrometrico si rilevano le condizioni dell'aria di immissione:

 $t_I = 20$ °C, u.r. 66%, $X_I = 9.6$ g/kg

Punto 2 – Calcolo della portata d'aria di immissione

Dalla relazione $Q_S = G_T c_{sm}(t_{A-}t_I)$ si ricava $G_T = 16.300 \text{ m}^3/\text{h}$.

Punto 3 – Calcolo della aria esterna di ricircolo.

Si passa al calcolo dell'aria di ventilazione, avendo stabilito in 40 m³/h, per questo tipo di utenza, il ricambio d'aria.Quindi la portata totale di ventilazione è:

 $G_V = 160 \text{ x} 40 = 6.400 \text{ m}^3/\text{h}.$

La portata totale dell'aria di ricircolo è:

 $G_R = G_T - G_V = 9.900 \text{ m}^3/\text{h}.$

Punto 4 – Calcolo delle potenzialità delle batterie.

Inizialmente si passa al calcolo della temperatura dell'aria di miscela (GR + GV) e cioè tM:

 $t_{\rm M} = (G_{\rm R} x t_{\rm A} + G_{\rm V} x t_{\rm E})/G_{\rm T} = 28,7^{\circ}{\rm C}.$

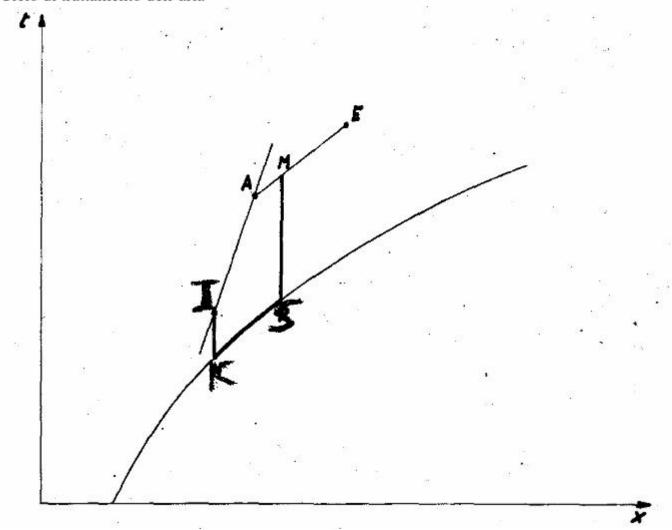
Con questa temperatura si individua sul diagramma il punto M di inizio del trattamento in centrale della portata G_T.

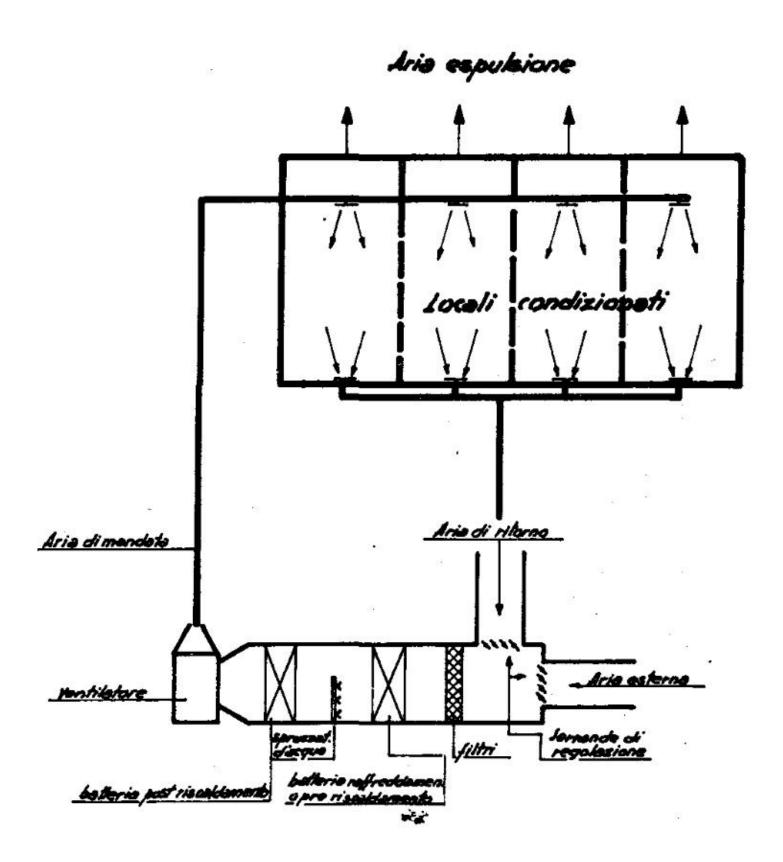
Dopo l'operazione di filtraggio la portata d'aria viene raffreddata alle condizioni di saturazione (punto S) e successivamente deumidificata fino al punto K in cui l'umidità assoluta coincide con quella d'immissione,

Successivamente l'aria viene post-riscaldata fino alla temperatura t_I d'immissione.

edutecnica.altervista.org

Punto 4 – Calcolo della potenzialità delle batterie.


• Batteria di raffreddamento e deumidificazione, potenzialità Q1:


 $Q_1 = G_T \times \gamma \times (J_M - J_K) = 97.000 \text{ W}$ dove le J rappresentano le entalpie dei rispettivi punti i cui valori si rilevano dal diagramma psicrometrico.

Batteria di post-riscaldamento, potenzialità Q2:

 $Q_2 = G_T \times \gamma \times (J_I - J_K) = 44.010 \text{ W}$ dove le J rappresentano le entalpie dei rispettivi punti i cui valori si rilevano dal diagramma psicrometrico.

Ciclo di trattamento dell'aria

